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1. Introduction

In this paper, we study the following superlinear stochastic heat equation (SHE) on Rd:
∂u(t,x)
∂t

=
1
2
∆u(t,x)+ b(u(t,x))+σ (u(t,x))Ẇ(t,x) , t> 0, x ∈ Rd,

u(0, ·) = u0 (·) ,
(1.1)

where both b and σ are locally Lipschitz continuous, vanish at zero, and may have superlinear
growth at infinity. The noise Ẇ is a centered Gaussian noise which is white in time and colored
in space. Its covariance structure can be formally described by

E
[
Ẇ(s,y)Ẇ(t,x)

]
= δ0 (t− s) f(x− y) , (1.2)

where δ0 is the Dirac delta measure and f is a nonnegative and nonnegative-definite tempered
measure on Rd. The case when f = δ0 refers to the space-time white noise. Note that the nota-
tion f(x− y) is convenient when f has a density, and we use f itself to refer to its density. See
remark 2.1 for the rigorous definition of the covariance structure and our conventions.

We note that f induces an inner product

〈φ,ψ〉H =

¨
R2d

φ(y)ψ (z) f(y− z)dydz (1.3)

for φ,ψ ∈ C∞
c (Rd), i.e. smooth functions with compact supports in Rd, and define the Hilbert

space H to be the completion of C∞
c (Rd) under this inner product.

The solution to (1.1) is understood as an adapted, jointly measurable random field satisfy-
ing the following stochastic integral equation (see, e.g. definition 1.1 of [3] for the complete
definition of the random field solution):

u(t,x) = (pt ∗ u0)(x)+
ˆ t

0

ˆ
Rd

pt−s (x− y)b(u(s,y))dyds

+

ˆ t

0

ˆ
Rd

pt−s (x− y)σ (u(s,y))W(ds,dy) ,

(1.4)

where pt(x) = (2π t)−d/2 exp
(
−|x|2/2t

)
is the heat kernel and the stochastic integral is the

Walsh integral [6, 29]. When both b and σ are globally Lipschitz continuous, there exists a
unique global solution. Here, a global solution means that u(t,x) is finite almost surely for all
x ∈ Rd and t> 0. However, when b and σ are only locally Lipschitz continuous, as is the case
in this paper, this may no longer hold. To clarify this, we introduce some notation. For p⩾ 1,
define

Vp := Lp
(
Rd
)
∩L∞

(
Rd
)

and ‖·‖Vp :=max
(
‖·‖Lp(Rd) , ‖·‖L∞(Rd)

)
, (1.5a)

where

‖ f‖Lp(Rd) :=

(ˆ
Rd

|f(x) |p dx
)1/p

and ‖ f‖L∞(Rd) := ess supx∈Rd |f(x) |. (1.5b)

In this paper, a solution is said to be global if, almost surely, ‖u(t, ·)‖Vp <∞ for all t> 0.
Conversely, if there exists a time t> 0 such that ‖u(t, ·)‖Vp =∞ with positive probability, the
solution is said to blow up in finite time. By employing a truncation procedure, a local solution
can always be uniquely constructed. This procedure will be utilized in the proof of the main
theorem presented in this work.
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For the one-dimensional deterministic ordinary differential equation

dv
dt

= b(v(t)) with b⩾ 0 and v(0) = c> 0, (1.6)

theOsgood condition [20] characterizes finite-time explosion. Solutions explode in finite time
if and only if the following finite Osgood condition holds:

Tblow-up :=
ˆ ∞

c

1
b(u)

du<+∞. (1.7)

In fact, the above quantity is precisely the explosion time. This can be seen by rewriting (1.6) as
follows t=

´ t
0

1
b(u(s))du(s). After a change of variable, which is one-to-one because b(u)> 0,

we obtain

t=
ˆ v(t)

v(0)=c

1
b(s)

ds.

This shows that (1.7) is both necessary and sufficient for blow-up of solutions to (1.6). The
Osgood condition does not fully characterize finite-time explosion for deterministic partial
differential equations as demonstrated by the famous example provided by Fujita [13].

Finite-time explosion for stochastic partial differential equations with superlinear b and σ
have only recently gained some attention. The case of a bounded spatial domain has received
more attention. Bonder and Groisman [9] demonstrated that if b satisfies (1.7), then a one-
dimensional SHE with additive space-time white noise, on a bounded spatial domain, will
always explode. Bonder and Groisman’s result was generalized to higher spatial dimensions
andmore general stochastic noises by Foondun and Nualart [11]. Foondun and Nualart showed
that if σ is bounded away from 0 and∞ in the sense that 0< c⩽ σ(u)⩽ C<∞, then analog-
ous to deterministic ordinary differential equations, the Osgood condition (1.7) on b character-
izes finite-time explosion for the SHE with additive noise on bounded domains in any spatial
dimension. In other words, the SHE with bounded initial data will explode in finite time if and
only if b satisfies (1.7).

Dalang, Khoshnevisan, and Zhang [8] first investigated the case where both σ and b can
grow superlinearly, and they established that global solutions exist if b grows no faster than
u logu and σ grow slower than u(logu)1/4. Salins [23] demonstrated that if b does not satisfy
condition (1.7), i.e. b satisfies the following infinite Osgood condition holds:

ˆ ∞

c

1
b(u)

du=+∞ for all c> 0, (1.8)

then to guarantee the existence of global solutions (i.e. solutions for all time), one can allow
σ to grow superlinearly as long as it satisfies an appropriate Osgood-type assumption. Shang
and Zhang [28] studied a superlinear stochastic heat Equation on a bounded domain driven by
a Brownian motion (namely, space-independent white noise).

Finite-time explosion for the superlinear stochastic wave Equations has been investigated
in [12] and [16], which proved sufficient conditions for finite-time explosion and those for
global solutions, respectively. In both works, the compact support property, which is inherited
from the fundamental solution of the wave equation, plays a crucial role.

The question of finite-time explosion for the stochastic heat Equation on unbounded spa-
tial domains is more complicated because solutions to the SHE can be unbounded in space
in the sense that P(supx |u(t,x)|=+∞) = 1 for every t> 0. Shang and Zhang [27] showed
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that if b grows like u log(u) and if σ is bounded and Lipschitz, then there exist global solu-
tions to the SHE on R. Salins [22] established that under the non-explosive Osgood condition
on b (1.8), which permits growth rates faster than u logu, global solutions exist when σ ≡ 1.
Conversely, Foondun, Khoshnevisan, and Nualart [10] proved that if b satisfies the explosive
Osgood condition (1.7) and σ is bounded away from both 0 and∞, then the solution explodes
‘instantaneously and everywhere,’ meaning that local solutions cannot exist for any positive
amount of time.

Chen and Huang [4] investigated the existence of global solutions to the SHE defined
on an unbounded spatial domain under assumptions that guarantee that spatial supremum
supx∈Rd u(t,x) remains finite. Specifically, they asusme that b(0) = 0, σ(0) = 0 and that the
initial data u0 ∈ Lp(Rd)∩L∞(Rd) for some p> 2. We impose these same restrictions in the
current paper. The current paper is a major improvement over the results of [4], examining
scenarios where solutions remain spatially bounded, while allowing for more general assump-
tions that accommodate faster growth of the superlinear b and σ terms.

In our proof, we employ a stopping-time argument originally introduced by Salins [23].
However, while Salins’ work focuses on equations defined on bounded domains, our study
considers the case where the spatial domain is the unbounded space Rd. To analyze the beha-
vior of these systems on unbounded domains, we need our stopping times to be based on the
Vp norm, defined in (1.5), which keeps track of both the spatial L∞(Rd) and Lp(Rd) norms. By
using exponential moment estimates instead of Lp moment estimates, we can improve upon
the results of [23] and allow extra growth in σ. This improvement can also be applied to the
bounded domain setting.

For the stochastic noise, one commonly assumes the following Sanz-Solé-Sarrà condi-
tion [24, 25], which is sometimes referred to as the strengthened Dalang’s condition in
the literature:

Υα := (2π)−d
ˆ
Rd

f̂(dξ)

(1+ |ξ|2)1−α
<∞ , for some 0< α < 1, (1.9)

where we use ĝ(ξ) to denote the Fourier transform of, e.g. Schwarz test function g, namely,
ĝ(ξ) := Fg(ξ) =

´
Rd e−ix·ξg(x)dx, and f̂ is in the generalized sense, i.e.

ˆ
Rd

ĝ(x) f(x)dx=
ˆ
Rd

g(ξ) f̂(dξ)

for all Schwarz functions g. Note that f̂ is a nonnegative tempered measure; see remark 2.1.
When α= 0, it reduces to the weaker Dalang’s condition [7]:

Υ(β) := (2π)−d
ˆ
Rd

f̂(dξ)
β+ |ξ|2

<+∞ for some and hence for all β > 0. (1.10)

Note that condition (1.10) is a sufficient condition for the existence and uniqueness of the mild
solution in L2(Ω) when b and σ are globally Lipschitz continuous and the initial condition
is bounded. It becomes a necessary and sufficient condition when σ is constant; see [7]. In
order to get slightly stronger results, instead of condition (1.9), we make the following slightly
weaker assumption on the noise (see lemma 2.2):
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Assumption 1.1. There exists α ∈ (0,1] such that

limsup
s↓0

s1−α

ˆ
Rd

e−s|ξ|2 f̂(dξ)<+∞. (1.11)

When the noise is one-dimensional space-time white noise, f = δ0, assumption 1.1 is
satisfied with α= 1/2 but the strengthened Dalang’s condition (1.9) is satisfied only for
α ∈ (0,1/2).

Regarding the drift term b and the diffusion coefficient σ, we make the following Osgood-
type assumptions following [23].

Assumption 1.2. Assume the following:

1. Both b and σ are locally Lipschitz continuous;
2. b(0) = 0 and σ(0) = 0;
3. There exists a positive, increasing function h : [0,∞)→ [0,∞) such that:

(a) (Superlinear growth) R+ 3 u→ u−1h(u) is non-decreasing; with lim
u→0

u−1h(u)⩾
exp(1/α);

(b) (Osgood-type condition of the infinite type) ∫∞1
1

h(u)
du=+∞;

(c) For all u ∈ R, |b(u)|⩽ h(|u|);
(d) For all u ∈ R, it holds that

|σ (u) |⩽ |u|1−α/2 (h(|u|))α/2
(
log

(
h(|u|)
|u|

))−1/2

; (1.12)

where the constant α in parts (a) and (d) is given in assumption 1.1.

Remark 1.3. In the bounded domain setting [23], Salins assumed that |σ(u)|⩽ |u|1−γ(h(|u|))γ
for some γ < α/2 (where that paper uses the notation 1− η = α). Our proof is based on expo-
nential tail estimates; see lemma 2.6 below. The condition on σ, given by (1.12), allows for a
faster growth rate for σ than that in [23]. The arguments based on the exponential tail estimates
can also be applied in the finite domain setting.

Remark 1.4. The assumption limu→0
h(u)
u ⩾ exp(1/α) is useful for our analysis, but it can be

relaxed to limu→0
h(u)
u > 0. If there is a superlinear function h : [0,∞)→ [0,∞) that satisfies

Assumption 1.2(b)–(c) and u 7→ h(u)
u is increasing, then it is always possible to build a larger h

that satisfies the bound limu→0
h(u)
u ⩾ exp(1/α). Specifically, for large C> 1, h̃(u) := Ch(u),

will continue to dominate b and σ in the appropriate way, and limu→0
h̃(u)
u = C limh→0

h(u)
u .

For p⩾ 1, recall that the space Vp is defined in (1.5). To guarantee that solutions to (1.1)
remain bounded in space, we make the following assumption on the initial data.

Assumption 1.5. The initial data u0 ∈ Vp for some p⩾ 2.

Remark 1.6. We observe that, Vp ⊂ Vq when q⩾ p⩾ 1, and the assumption p⩾ 2 will be
made below to enable the use of the Burkholder–Davis–Gundy inequality. See also lemma 2.3
below.

The aim of this present paper is to prove the following theorem:

5
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Theorem 1.7. Suppose that the noise satisfies assumption 1.1 for some α ∈ (0,1], the ini-
tial condition satisfies assumption 1.5 for some p⩾ (2+ d)/α, and that b(·) and σ(·) satisfy
assumption 1.2. Then, we have the following:

1. There exists a unique mild solution u(t,x) to (1.1) for all (t,x) ∈ (0,+∞)×Rd.
2. Moreover, if f satisfies the strengthened Dalang’s condition (1.9) for some α ∈ (0,1],
then the solution u(t,x) is Hölder continuous: u ∈ Cα/2−,α− ((0,T]×Rd

)
a.s. where

Cα1−,α2− (D) denotes the Hölder continuous function on the space-time domain D with
exponents α1 − ϵ and α2 − ϵ in time and space, respectively, for every small ϵ> 0.

When both b andσ are globally Lipschitz continuous, the conditions that b(0) = 0,σ(0) = 0
and u0 ∈ Vp guarantee that the solution to (1.1) remains in Vp almost surely. This follows from
the results in [7]. This allows us to perform a localization procedure on the solution. We can
prove that the solution cannot explode in finite time by proving that the sequence of hitting
times

τn := inf
{
t> 0 : ‖u(t, ·)‖Vp ⩾ 3n

}
(1.13)

have the property that

P
(
sup
n
τn =∞

)
= 1. (1.14)

Our main result—theorem 1.7—provides the optimal condition on the drift term b, which
can be seen from the following theorem:

Theorem 1.8. Let b : R→ R be a locally Lipschitz continuous, nondecreasing and convex
function that vanishes at zero (b(0) = 0). Suppose that σ(·) is globally Lipschitz continu-
ous. Moreover, we assume that σ vanishes at zero and is bounded, namely, σ(0) = 0 and
supu∈R |σ(u)|⩽ K. Under the noise assumption—assumption 1.1, if b is non-negative and
increasing, and satisfies the finite Osgood condition (1.7), then for any p⩾ 2, there exists
some non-negative initial condition u0(·) ∈ Vp to (1.1) such that solutions to (1.1) explode in
finite time with positive probability in the sense that

P
(
sup
n
τn <∞

)
> 0 .

where the hitting times τ n are defined in (1.13).

Remark 1.9. Theorem 1.8 might hold true in certain cases without the condition that σ is
bounded. However, having this restriction simplifies its proof and is sufficient to demonstrate
the optimality of our condition on b(·). Determining the optimal condition on the diffusion
coefficient σ is still an open problem, which will be left for further study. Our setting of the-
orem 1.8 is different than the settings investigated by Bonder and Groisman [9], Foondun and
Nualart [11], and Foondun, Khoshnevisan, and Nualart [10] because we require that σ(0) = 0.
In all of these other works, the authors assumed that σ was uniformly bounded away from 0,
and they can show that explosion occurs with probability one. Because σ is degenerate near
zero, we do not expect that explosion should occur with probability one. Instead we show that
there exist initial data from which explosion is possible with positive probability.
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Remark 1.10. Our assumptions of theorem 1.8 allow σ to be identically zero, so that (1.1)
becomes deterministic. If we choose b(u) = up with p⩾ 1+ 2/d, then Fujita showed that there
exist initial data for which solutions will not explode [13]. See also section 20 of [21] for more
information on this and other blow-up results for non-linear PDEs. In Fujita’s example, there
also exist initial data that cause explosion. theorem 1.8 for the stochastic setting claims the
existence of an initial profile from which explosion happens with positive probability. In our
proof of positive probability explosion we take the initial data to be a large constant multiplied
by a heat kernel. It will not be possible to fully describe the sets of initial data from which
explosion is possible without additional assumptions on the local behavior of f and σ near the
degenerate points of σ. We leave this characterization for future work.

In order to introduce some examples, we use the following notation for the repeated logar-
ithm function: log1(u) := log(u) and for k⩾ 2, logk(u) := log

(
logk−1 u

)
.

Example 1.11. Examples of superlinear Osgood-type h functions include h(u) = u log(u),
h(u) = u log(u) log2(u), h(u) = u log(u) log2(u) log3(u), and so on, as listed in the first column
of the tables in table Tb:Bdd(a). In particular, we have two special cases:

• Since
´
Rd e−s|ξ|2dξ = (2π)d

´
Rd p2s (y)dy= (π/s)d/2, we see that when d= 1, assumption 1.1

is satisfied with α= 1/2. Therefore, in case of the spatial dimension one and Ẇ is space-
timewhite noise, we can takeα= 1/2 in (1.12). In particular, we have the concrete examples
listed in table 1(b).

• If f(0)<∞, or equivalently,
´
Rd f̂(ξ)dξ <+∞, then α= 1. In this case, the growth rates for

σ and some typical h are listed in Table 1.

In general, for α ∈ (0,1] given in assumption 1.1, the function h with repeated logarithms and
the corresponding growth bound for σ are listed in table 1(c).

In [4], it is demonstrated that there exists a global solution when b(u) grows as fast as
u log(u) and σ(u) grows as fast as u(logu)α/2. This paper utilizes a method motivated by [8],
which studied the setting of a bounded one-dimensional domain. Our new result is stronger
than the previous ones because we can allow b to grow faster than u logu as long as b is
dominated by an Osgood-type h. We believe that the methods used in [4] cannot easily be
extended to deal with b growing faster than u logu.

Interestingly, there remains a specific scenario where the method used in [4] yields a
stronger result than theorem 1.7 of the current paper. Specifically, when b grows no faster than
u logu and σ grows as u(logu)α/2, the main result of [4] can be used to prove that solutions
never explode. Based on our current strategy of using stopping time arguments and exponential
estimates, we can let σ grow like (see table 1(c) with K= 1)

u [log(u)]α/2 [log2 (u)]
−1/2

.

However, if α< 1, then we cannot achieve u(logu)α/2 growth for σ. This suggests that both
approaches to this problem are useful. In the case where α= 1, our result allows for b and σ
that both grow faster than those in [4].

This paper is organized as follows. In section 2, we introduce some notation and establish
some technical results. Our main result—theorem 1.7—is proved in section 3. theorem 1.8 is
proved in section 4. Finally, we recall the Burkholder–Davis–Gundy inequality for the mar-
tingale in Banach space in the appendix.

7
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Table 1. The growth rate of σ is listed in the second column. The h’s in the first column are typical
examples that satisfy the Osgood condition (see part 3-(b) of assumption 1.2). The growth rate of σ is
listed in the second column.

(a) The case when the noise has a bounded
correlation function, i.e. f(0)<∞: α= 1.

h(u)∼ σ(u) can grow as fast as

u log(u) u(logu)1/4 (log2(u))
−1/2

u log(u) log2(u) u(logu)1/4(log2(u))
−1/4

u log(u) log2(u) log3(u) u(logu)1/4(log2(u))
−1/4 (log3(u))

1/4

(b) The case when d= 1 and the noise
is the space-time white noise: α= 1/2.

h(u)∼ σ(u) can grow as fast as

u log(u) u(logu)1/2 (log2(u))
−1/2

u log(u) log2(u) u(logu)1/2

u log(u) log2(u) log3(u) u(logu)1/2(log3(u))
1/2

(c) The general case: α ∈ (0,1] with K⩾ 1.

h(u)∼ σ(u) can grow as fast as

u
K∏
k=1

logk(u) u(log2(u))
−1/2

K∏
k=1

(logk(u))
α/2

2. Some preliminaries

In the following, ‖·‖Lp refers to ‖·‖Lp(Rd) with p ∈ [1,∞] and ‖X‖p := E(|X|p)1/p.

Remark 2.1. LetΦ andΨ be Schwarz test functions onRd, and let ϕ andψ ∈ C∞
c (R), namely,

smooth and compactly supported test functions on R. The covariance of the noise is given by

E
[ˆ ∞

0

ˆ
Rd

ϕ(s)Φ(x)W(ds,dx)
ˆ ∞

0

ˆ
Rd

ψ (s)Ψ(y)W(ds,dy)

]
=

(ˆ ∞

0
ϕ(s)ψ (s)ds

)
×〈Φ,Ψ ∗ f〉L2(Rd).

(2.1)

where ‘∗’ denotes the convolution in the spatial variable and 〈g,h〉L2(Rd) :=
´
Rd g(x)h(x)dx. By

the Bochner–Schwarz theorem, the covariance operator is well-defined provided that f is a non
negative-definite tempered measure on Rd. In that case, Plancherel’s theorem implies that the
Fourier transform of f is a nonnegative tempered measure on Rd and the L2(Rd) inner product
in (2.1) can be written as

〈Φ,Ψ ∗ f〉L2(Rd) = (2π)−d
ˆ
Rd

Φ̂(ξ)Ψ̂(ξ)̂f(dξ) , (2.2)

where the bar denotes complex conjugation. When f has a density, the L2(Rd) inner product
in (2.1) is more conveniently written as

〈Φ,Ψ ∗ f〉L2(Rd) =

¨
R2d

Φ(x) f(x− y)Ψ(y)dxdy. (2.3)

8
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Similarly, when f̂ has a density, f̂(dξ) in (2.2) is often written as f̂(ξ)dξ. Throughout this paper,
for readability, we use the notation f̂(ξ)dξ instead of f̂(dξ). In other words, f̂(ξ)dξ should be
understood as f̂(dξ). Similarly, the convolution in the form of the righ-hand side of (2.3) should
be understood as the left-hand side of the same equation.

Lemma 2.2. If f satisfies the strengthened Dalang’s condition (1.9) with some α ∈ (0,1), then
it satisfies assumption 1.1 with the same α.

Proof. Notice that sups>0 s
1−αe−s|ξ|2 = Cα|ξ|−2(1−α) withCα = (1−α)1−αe−(1−α). Hence,

ˆ
Rd

s1−αe−s|ξ|2 f̂(dξ) =

(ˆ
|ξ|⩽1

+

ˆ
|ξ|>1

)
s1−αe−s|ξ|2 f̂(dξ)

⩽s1−α̂f(B1)+Cα

ˆ
|ξ|>1

|ξ|−2(1−α)̂f(dξ)⩽ s1−α̂f(B1)+CCαΥα,

for some constant C> 0, where B1 is the unit ball in Rd. Since f̂ is a tempered measure; see
remark 2.1, f̂(B1)<∞. Taking limsups↓0 on both sides of the above inequality proves the
lemma.

We will often use the following simple but useful property of Vp, which shows that the
space Vp is monotone in p.

Lemma 2.3. If 1⩽ p⩽ r<∞, then Vp ⊆ Vr ⊆ Lr(Rd) and for any v ∈ Vp,

‖v‖Lr ⩽ ‖v‖Vr ⩽ ‖v‖Vp . (2.4)

Proof. The proof is straightforward. Let r ∈ [p,+∞). Then notice that ‖v‖rLr =
´
Rd |v(x)|rdx,

which is less than
(´

Rd |v(x)|pdx
)
supx∈Rd |v(x)|r−p = ‖v‖pLp ‖v‖

r−p
L∞ ⩽ ‖v‖rVp .

Lemma 2.4. Assume that b and σ in (1.1) satisfy assumption 1.2. For any p⩾ 1, if v ∈ Vp,
then the compositions f(v) ∈ Vp and σ(v) ∈ Vp. Moreover,

∥b(v)∥Vp ⩽ h
(
∥v∥Vp

)
and ∥σ (v)∥Vp ⩽ ∥v∥1−α/2

Vp
h
(
∥v∥Vp

)α/2log

h
(
∥v∥Vp

)
∥v∥Vp

−1/2

.

(2.5)

Proof. We first consider the case when p=∞. We claim that

‖b(v)‖L∞ ⩽ h(‖v‖L∞) and

‖σ (v)‖L∞ ⩽ ‖v‖1−α/2
L∞ h(‖v‖L∞)

α/2
(
log

(
h(‖v‖L∞)

‖v‖L∞

))−1/2

.
(2.6)

Since |b(v(x))|⩽ |h(v(x))| for all x⩾ 0, the first inequality in (2.6) is proved by taking
supremum on both sides of this inequality proves. As for the second inequality in (2.6),
denote g(x) := h(x)

x . Part 3 (a) of assumption 1.2 says that g(x) is nondecreasing for x⩾ 0
and g(x)⩾ exp(1/α). Let

G(u) :=
uα/2√
logu

and F(x) := G(g(x)) =
g(x)α/2√
log(g(x))

.

9
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F(x), as a composition of the two nondecreasing functions g(x) and G(u), is again nondecreas-
ing for all x⩾ 0. This proves the second inequality of (2.6). Note that the nondecreasing prop-
erty of G is due to the following elementary calculation:

G ′ (u) =
u−1+α/2

2α [log(u)]3/2

(
log(u)− 1

α

)
, provided that u⩾ exp(1/α) .

The interesting part of the proof is showing that the Lp(Rd) norm is bounded. To this end,
observe that

‖b(v)‖pLp =
ˆ
Rd

|b(v(x)) |pdx⩽
ˆ
Rd

|v(x) |p
(
h(|v(x) |)
|v(x) |

)p

dx⩽ ‖v‖pLp sup
x∈Rd

(
h(|v(x) |)
|v(x) |

)p

,

where the first inequality is obtained by using the bound on b given in assumption 1.2. From
the assumption that v 7→ h(v)

v is increasing, the above display is bounded by

⩽ ‖v‖pLp
(
h(‖v‖L∞)

‖v‖L∞

)p

⩽ ‖v‖pVp

h
(
‖v‖Vp

)
‖v‖Vp

p

. (2.7)

Therefore, we can conclude that ‖b(v)‖Lp ⩽ h(‖v‖Vp). Combining this with the first relation
in (2.6) proves the first inequality in (2.5). The argument for the case of σ is similar and one
needs to use assumption 1.2 and the following inequality:

‖σ (v)‖pLp ⩽
ˆ
Rd

|v(x) |p
(
h(|v(x) |)
|v(x) |

)αp/2(
log

(
h(|v(x) |)
|v(x) |

))−p/2

dx. (2.8)

The rest of the arguments are the same as those for b.

Lemma 2.5. (1) Let p⩾ 1. If, for some deterministic constants T,M> 0, the random field
Ψ : Ω×R+ ×Rd → R satisfies sup

t∈[0,T]
‖Ψ(t, ·)‖Vp ⩽M<∞, almost surely, then

∥∥∥∥ˆ t

0

ˆ
Rd

pt−s (· − y)Ψ(s,y)dyds

∥∥∥∥
Vp

⩽ tM, almost surely. (2.9)

(2) Let Φ : Ω×R+ ×Rd → R be an adapted and jointly measurable random field. Suppose
that p⩾ 2, and for some α ∈ (0,1], assumption 1.1 is satisfied. If for any T> 0, there exists
a constant M> 0 such that supt∈[0,T] ‖Φ(t, ·)‖Vp ⩽M a.s. then for all k>max{(2+ d)/α,p},
there exists a constant C> 0 depending only on (d,α,p), but not on (T,M,k), such that

E

(
sup
t∈[0,T]

∥∥∥∥ˆ t

0

ˆ
Rd

pt−s (· − y)Φ(s,y)W(ds,dy)

∥∥∥∥k
Vp

)
⩽ Ckkk/2T(αk−d)/2

(
1+Td/2

)
Mk.

(2.10)

Proof. Part (1) is obtained by an application of the Minkowski inequality. Part (2) will be
proved in three steps. Denote the stochastic integral by Z(t,x). By the factorization lemma
(see [5, section 5.3.1]), for β ∈ (0,α),

10
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Z(t,x) =
sin(βπ/2)

π

ˆ t

0

ˆ
Rd

(t− r)−1+β/2Y(r,z)pt−r (x− z)dzdr, (2.11)

Y(r,z) =
ˆ r

0

ˆ
Rd

(r− s)−β/2 pr−s (z− y)Φ(s,y)W(ds,dy) . (2.12)

In the following, we use C to denote a generic constant that does not depend on T,M, k and p,
whose value may change at each appearance.

Step I. In this step, we will show that for all k>max((2+ d)/β,p), p⩾ 2, and T > 0, it holds
that

E

(
sup

(t,x)∈[0,T]×Rd

|Z(t,x) |k
)

⩽ Ckkk/2MkT(αk−d)/2. (2.13)

By Hölder inequality with exponents k and k
k−1 , for arbitrary t> 0 and x ∈ Rd,

|Z(t,x) |k ⩽ Ck
(ˆ t

0

ˆ
Rd

(t− s)
(β/2−1)k

k−1 |pt−s (x− y) |
k

k−1 dyds

)k−1ˆ t

0

ˆ
Rd

|Y(s,y) |kdyds.

We use the fact that

|pt−s (x− y) |
k

k−1 = pt−s (x− y) |pt−s (x− y) |
1

k−1 ⩽ C(t− s)−
d

2(k−1) pt−s (x− y) ,

along with the fact that pt−s(·) is a density to bound the above expression by

|Z(t,x) |k ⩽
(ˆ t

0
(t− s)

(β/2−1)k
k−1 − d

2(k−1) ds

)k−1ˆ t

0

ˆ
Rd

|Y(s,y) |kdyds.

Notice that

(β/2− 1)k
k− 1

− d
2(k− 1)

>−1 ⇐⇒ k>
2+ d
β

.

Hence, if we choose k> (2+ d)/β, then the first integral is finite and

|Z(t,x) |k ⩽ Ct
βk
2 − d

2−1
ˆ t

0

ˆ
Rd

|Y(s,y) |kdyds. (2.14)

Hence,

E

(
sup

(t,x)∈[0,T]×Rd

|Z(t,x) |k
)

⩽ CT
βk
2 − d

2−1
ˆ T

0
dr
ˆ
Rd

dzE
(
|Y(r,z)|k

)
.

Now, for Y(r,z), by the Burkholder–Davis–Gundy inequality, we see that

‖Y(r,z)‖2k ⩽ 8k
ˆ r

0
ds
¨

R2d

dydy ′ (r− s)−β f(y− y ′) pr−s (y)‖Φ(s,z− y)‖k

×pr−s (y
′)‖Φ(s,z− y ′)‖k . (2.15)

11
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Then by the Minkowski inequality, we see that

ˆ
Rd

E
(
|Y(r,z)|k

)
dz⩽Ckkk/2

ˆ
Rd

(ˆ r

0
ds
¨

R2d

dydy ′ (r− s)−β f(y− y ′)

×pr−s (y)pr−s (y
′)‖Φ(s,z− y)‖k ‖Φ(s,z− y ′)‖k

)k/2
dz

⩽Ckkk/2
(ˆ r

0
ds
¨

R2d

dydy ′ (r− s)−β f(y− y ′)

×pr−s (y)pr−s (y
′)
∥∥‖Φ(s, · − y)‖k ‖Φ(s, · − y ′)‖k

∥∥
Lk/2

)k/2
⩽Ckkk/2

(ˆ r

0
ds
¨

R2d

dydy ′ (r− s)−β f(y− y ′)

×pr−s (y)pr−s (y
′)
∥∥‖Φ(s, ·)‖k

∥∥2
Lk

)k/2
,

where in the last inequality we applied the Hölder inequality. If k⩾ p, then we can use the
Fubini theorem and the assumption on Φ(·,◦) to obtain that

∥∥‖Φ(s, ·)‖k
∥∥k
Lk
= E

(ˆ
Rd

|Φ(s,z) |kdz
)

⩽ E
((ˆ

Rd

|Φ(s,z) |pdz
)
‖Φ(s)‖k−p

L∞

)
⩽ E

(
sup
s∈[0,T]

‖Φ(s, ·)‖kVp

)
⩽Mk,

for all s ∈ [0,T], Hence,

ˆ
Rd

E
(
|Y(r,z)|k

)
dz⩽Ckkk/2Mk

(ˆ r

0
ds
¨

R2d

dydy ′ (r− s)−β f(y− y ′)pr−s (y)pr−s (y
′)

)k/2

.

By the Plancherel theorem, we see that
ˆ r

0
ds
¨

R2d

dydy ′ (r− s)−β f(y− y ′)pr−s (y)pr−s (y
′)

= (2π)−d
ˆ r

0
ds (r− s)−β

ˆ
Rd

e−(r−s)|ξ|2 f̂(ξ)dξ

= (2π)−d
ˆ r

0
ds s−β

ˆ
Rd

e−s|ξ|2 f̂(ξ)dξ.

By assumption 1.1 and the fact that the function s→
´
Rd e−s|ξ|2 f̂(ξ)dξ is non-increasing, we

see that for some universal constant C> 0,
ˆ
Rd

e−s|ξ|2 f̂(ξ)dξ ⩽ Cs−(1−α), for all s> 0.

Hence,
ˆ r

0
ds
¨

R2d

dydy ′ (r− s)−β f(y− y ′)pr−s (y)pr−s (y
′)⩽ C

ˆ r

0
s−β+α−1ds= Crα−β . (2.16)

12
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Thus, we have that

ˆ
Rd

E
(
|Y(r,z)|k

)
dz⩽ Ckkk/2Mkr(α−β)k/2. (2.17)

Finally, if k>max((2+ d)/β,p), by putting (2.17) back into (2.14), we prove the claim
in (2.13).

Step II. In this step, we will show that for all k>max((2+ d)/β,2), p⩾ 2, and T > 0, it
holds that

E

(
sup
t∈[0,T]

‖Z(t, ·)‖kLp

)
⩽ Ckkk/2MkTαk/2. (2.18)

By the Minkowski inequality and the Hölder inequality, we see that for t ∈ [0,T],

‖Z(t, ·)‖Lp ⩽
ˆ t

0
dr (t− r)−1+β/2

ˆ
Rd

dz pt−r (z)‖Y(r, · − z)‖Lp

=

ˆ t

0
(t− r)−1+β/2 ‖Y(r, ·)‖Lp dr

⩽
(ˆ t

0
(t− r)

k
k−1 (−1+β/2) dr

) k−1
k
(ˆ t

0
‖Y(r, ·)‖kLp dr

)1/k

.

If k> (2+ d)/β, the above dr–integral is finite and hence,

E

(
sup
t∈[0,T]

‖Z(t, ·)‖kLp

)
⩽CkT−1+βk/2

ˆ T

0
E
(
‖Y(r, ·)‖kLp

)
dr. (2.19)

To estimate E
(
‖Y(r, ·)‖kLp

)
, if we assume that k,p⩾ 2, then we can apply the BDG inequality

in lemma A.5 to get

E
(
∥Y(r, ·)∥kLp

)
⩽ Ckk

k
2 E

ˆ t

0

[ˆ
Rd

(¨
R2d

(t− s)−β pt−s (x− y)pt−s (x− y ′)Φ(s,y)Φ(s,y ′) f(y− y ′)dydy ′
) p

2

dx

] 2
p

ds

k/2
= Ckk

k
2 E

ˆ t

0
(t− s)−β

[ˆ
Rd

(¨
R2d

pt−s (y)pt−s (y
′)Φ(s,x− y)Φ(s,x− y ′) f(y− y ′)dydy ′

) p
2

dx

] 2
p

ds

k/2
⩽ Ckk

k
2 E

[(ˆ t

0

¨
R2d

(t− s)−β pt−s (y)pt−s (y
′)∥Φ(s, · − y)Φ(s, · − y ′)∥Lp/2 f(y− y ′)dydy ′ds

)k/2
]

⩽ Ckk
k
2 E

[(ˆ t

0

¨
R2d

(t− s)−βpt−s(y)pt−s(y
′)∥Φ(s, ·)∥2Lp f(y− y ′)dydy ′ds

)k/2
]
.

Then based on the assumption that ‖Φ(s, ·)‖Lp ⩽M a.s. and thanks to (2.16), we see that

E
(
‖Y(r, ·)‖kLp

)
⩽ Ckkk/2Mkr(α−β)k/2.

Combining the above estimate with (2.19) proves (2.18).

13
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Step III. Finally, combining the results from the previous two steps shows that if k>
max((2+ d)/β,p) and p⩾ 2, then for all T > 0,

E

(
sup
t∈[0,T]

‖Z(t, ·)‖kVp

)
⩽E

(
sup
t∈[0,T]

(
‖Z(t, ·)‖kLp + ‖Z(t, ·)‖kL∞

))

⩽CkE
(

sup
t∈[0,T]

‖Z(t, ·)‖kLp

)
+CkE

(
sup
t∈[0,T]

‖Z(t, ·)‖kL∞

)
⩽Ckkk/2Mk

(
T(αk−d)/2 +Tαk/2

)
.

This completes the proof of lemma 2.5.

We next give the exponential estimates for the stochastic integral in the previous lemma,
which will be used in the proof of our main theorem. The space-time white noise case has been
considered by Athreya, et al [1]; see also [2, 15, 17].

Lemma 2.6 (exponential estimates). Assume that Φ : Ω×R+ ×Rd → R be an adapted and
jointly measurable random field and p⩾ 2. If assumption 1.1 holds for some α ∈ (0,1], and if
for any T⩾ 0, there exists a constant M=M(T,p)⩾ 0 such that

sup
t∈[0,T]

‖Φ(t, ·)‖Vp ⩽M, a.s.,

then, there exists a constant C> 0 independent of M and T such that for any δ > 0,

P

(
sup
t∈[0,T]

∥∥∥∥ˆ t

0

ˆ
Rd

G(t− s,x− y)Φ(s,y)W(ds,dy)

∥∥∥∥
Vp

> δ

)
⩽ C

(
1+T−d/2

)
e−Cδ2M−2T−α

.

(2.20)

Proof. Denote Z(t,x) :=
´ t
0

´
RdG(t− s,x− y)Φ(s,y)W(ds,dy). Fix an arbitrary λ> 0. From

Taylor series, we see that

E

[
exp

(
λ sup
t∈[0,T]

‖Z(t, ·)‖Vp

)]
=

∞∑
k=0

λk

k!
E

[
sup
t∈[0,T]

‖Z(t, ·)‖kVp

]
.

We claim that

E

[
exp

(
λ sup
t∈[0,T]

‖Z(t, ·)‖Vp

)]
⩽
(
1+Td/2

)
T−d/2

∞∑
k=0

λkCkMkTkα/2kk/2

k!
. (2.21)

Indeed, the above inequality (2.21) follows from the moment estimates in part (2) of lemma 2.5
for k>max(p,(d+ 2)/α). If k⩽max(p,(d+ 2)/α), one can use the Jensen inequality and
then pick the leading constant big enough. This proves the claim in (2.21).

In order to transform the summation in (2.21) into an exponential form, we apply Stirling’s
approximation k!∼ (k/e)k

√
2π k to see that

kk/2

k!
×Γ(k/2+ 1)∼ 1√

2

(√
e/2
)k
,

14
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which implies that for some universal constant Θ> 0,

kk/2

k!
⩽ Θk+1

Γ(k/2+ 1)
, for all k= 0,1,2, · · · .

Therefore, from (2.21), we see that

E

[
exp

(
λ sup
t∈[0,T]

‖Z(t, ·)‖Vp

)]
⩽
(
1+T−d/2

)
Θ

∞∑
k=0

ΘkCkλkMkTkα/2

Γ(k/2+ 1)

=
(
1+T−d/2

)
Θexp

(
Θ2C2λ2M2Tα

)
[1+Erf(ΘCλMTα)] ,

where Erf(·) is the error function and the equality can be found, e.g. in formula 7.2.6 in [18].
Notice that Erf(x)⩽ 1. Hence, we have that

E

[
exp

(
λ sup
t∈[0,T]

‖Z(t, ·)‖Vp

)]
⩽ 2Θ

(
1+T−d/2

)
exp
(
Θ2C2λ2M2Tα

)
, (2.22)

Finally, we can derive the exponential tail estimates by the Chebyshev inequality: for any
λ> 0,

P

(
sup
t∈[0,T]

‖Z(t, ·)‖Vp > δ

)

= P

(
sup
t∈[0,T]

exp
(
λ‖Z(t, ·)‖Vp

)
> exp(λδ)

)

⩽ exp(−λδ)E

[
exp

(
λ sup
t∈[0,T]

‖Z(t, ·)‖Vp

)]
⩽ 2Θ

(
1+T−d/2

)
exp
(
Θ2C2λ2M2Tα −λδ

)
= 2Θ

(
1+T−d/2

)
exp

(
Θ2C2M2Tα

(
λ− δ

2Θ2C2M2Tα

)2

− δ2

4Θ2C2M2Tα

)
.

By choosing λ= δ
2Θ2C2M2Tα , we can conclude that

P

(
sup
t∈[0,T]

‖Z(t, ·)‖Vp > δ

)
⩽ 2Θ

(
1+T−d/2

)
exp

(
− δ2

4Θ2C2M2Tα

)
,

which proves lemma 2.6.

In the next theorem, we generalize theorem 1.6 of [4] from the original Dalang condi-
tion (1.10) to the weaker condition—Assumption (1.1). Part (1) of theorem 2.1 originates
from the moment formula in [3]. Part (2) of theorem 2.1 shows that if the initial condition
u0 ∈ Vp with p⩾ 1, then for the Equation (1.1) with both b and σ being globally Lipschitz and
vanishing at zero, i.e. b(0) = σ(0) = 0, the solution u(t, ·) ∈ Vp for any t> 0, a.s.
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Theorem 2.7 (moment formulas under Lipschitz condition). Assuming assumption 1.1, and
that both b and σ are globally Lipschitz continuous with

Lσ := sup
z∈R

|σ (z)−σ (0) |
|z|

and Lb := sup
z∈R

|b(z)− b(0) |
|z|

.

Then we have:

(1) Suppose that u0 is a rough initial condition, namely, u0 is locally finite, signed measure
such that J+(t,x) := (pt ∗ |u0|)(x)<∞ for all t> 0 and x ∈ Rd, where |u0|= u0,+ + u0,−
and u0 = u0,+ − u0,− is the Jordan decomposition. Then for any p⩾ 2,

‖u(t,x)‖p ⩽ C(τ + J+ (t,x))exp
(
Ctmax

(
p1/αL2/ασ ,Lb

))
, (2.23)

where the constant C does not depend on (t,x,p,Lb,Lσ) and

τ :=
|b(0) |
Lb

∨ |σ (0) |
Lσ

.

(2) If u0 ∈ L∞(Rd)∩Lp(Rd) and assume that σ(0) = b(0) = 0, then for all t> 0 and
p> 2+d

α ,∥∥∥∥∥ sup
(s,x)∈[0,t]×Rd

u(s,x)

∥∥∥∥∥
p

⩽ ‖u0‖L∞ +C‖u0‖Lp (Lb+Lσ)exp
(
Ctmax

(
p1/αL2/ασ ,Lb

))
,

where the constant C does not depend on (t,x,p,Lb,Lσ).

Proof. Comparing the proofs of parts (b) and (c) of theorem 1.6 of [4], we see that one only
needs to prove part (1) of the theorem, the proof of which follows a similar argument of that
used in part (b) of Theorem 1.6 (ibid.). The proof of part (2) is similar that of part (c) of
Theorem 1.6 (ibid.), and so it will not be repeated here. However, lemma 2.5 is used to handle
the moment estimates. This allows us to work under assumption 1.1 instead of the stronger
condition 1.9. Proceeding now to part (1), according to the proof of part (b) of Theorem 1.6
(ibid.),

‖u(t,x)‖p ⩽
√
3J+ (t,x)H8pL2σ,L

2
b
(t;1)1/2 ,

where the notation Ha,b(t;1) is introduced in section 2.2 in [4]. An upper bound of Ha,b(t;1)
is given in lemma 2.1 in [4], i.e.

limsup
t→∞

1
t
logHa,b (t;1)⩽ inf

{
β > 0 : aΥ(2β)+

b
2β2

<
1
2

}
⩽max

(
inf

{
β > 0 : aΥ(2β)<

1
4

}
, inf

{
β > 0 :

b
2β2

<
1
4

})
.

For the first argument in the above maximum, we want to find β such that

1

(2π)d

ˆ
Rd

f̂(ξ)
2β+ |ξ|2

dξ <
1
4a
.
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Notice that

1

(2π)d

ˆ
Rd

f̂(ξ)
2β+ |ξ|2

dξ =
1

(2π)d

ˆ ∞

0

ˆ
Rd

e−2βse−s|ξ|2 f̂(ξ)dξ ds

=
1

(2π)d

ˆ 1/β

0

ˆ
Rd

e−2βse−s|ξ|2 f̂(ξ)dξ ds

+
1

(2π)d

ˆ ∞

1/β

ˆ
Rd

e−2βse−s|ξ|2 f̂(ξ)dξ ds

=: I1 + I2.

According to assumption 1.1,

I1 ⩽ C
ˆ 1/β

0
sα−1ds=

C
βα

,

and similarly,

I2 =
1

(2π)d

ˆ
Rd

e−(2β+|ξ|2) 1
β

2β+ |ξ|2
f̂(ξ)dξ ⩽ C

2β

ˆ
Rd

e−|ξ|2× 1
β f̂(ξ)dξ ⩽ C

β

(
1
β

)α−1

=
C
βα

.

Therefore,

max

(
inf

{
β > 0 : aΥ(2β)<

1
4

}
, inf

{
β > 0 :

b
2β2

<
1
4

})
⩽ Cmax

(
a1/α,b1/2

)
<∞ .

Finally, replacing a and b by 8pL2σ and L2b, respectively, proves part (1).

3. Proof of theorem 1.7

Now we are ready to prove the main result—theorem 1.7.

Proof of theorem 1.7. The proof follows the same strategy as that in [23]. First we define the
cutoff functions for b and σ:

bn (u) :=


b(−3n) if u<−3n

b(u) if |u|⩽ 3n

b(3n) if u> 3n
and σn (u) :=


σ (−3n) if u<−3n

σ (u) if |u|⩽ 3n

σ (3n) if u> 3n
, respectively.

Since both bn(·) and σn(·) are globally Lipschitz continuous, by part (2) of theorem 2.1 with
b and σ are replaced by bn and σn, for p>(2+ d)/α, there is a unique solution solving

un (t,x) =
ˆ
Rd

pt (x− y)u0 (y)dy+
ˆ t

0

ˆ
Rd

pt−s (x− y)bn (un (s,y))dyds

+

ˆ t

0

ˆ
Rd

pt−s (x− y)σn (un (s,y))W(ds,dy)

with ‖un (t, ·)‖Vp <∞. Denote the following sequence of stopping times

τn := inf
{
t> 0 : ‖un (t, ·)‖Vp > 3n

}
. (3.1)
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It is easy to check that the solutions are consistent in the sense that un(t,x) = um(t,x) for all
t< τn whenever n<m. We can define a local mild solution to (1.1) by setting

u(t,x) := un (t,x) when t< τn.

This local mild solution will exist until the explosion time τ∞ := supn τn. A local solution is
called a global solution if τ∞ =∞ with probability one.

We build the deterministic sequence

an :=min

{
Θ3n+1

h(3n+1)
,
1
n

}
, (3.2)

with the constant Θ ∈ (0,1/3) to be determined later. Just like in [23], the Osgood condition´∞
1

1
h(u)du=+∞ guarantees that

∞∑
n=1

an =+∞.

Our goal is to show that the tripling times are bounded below by this deterministic sequence
τn+1 − τn ⩾ an for all large n, which implies that there is a global solution. To this end, we
derive the following moment estimates.

Claim: There exist constants C> 0 and q> 1, both independent of n, such that

P(τn+1 − τn < an)⩽ Cn−q, for all n ∈ N. (3.3)

Indeed, as mentioned previously, each τ n is well-defined and the solution u(τn, ·) ∈ Vp.
Therefore, we can restart the process at time τ n. For all t> 0 and x ∈ Rd, define

Un (t,x) :=
ˆ
Rd

pt (x− y)u(τn,y)dy,

In (t,x) :=
ˆ t

0

ˆ
Rd

pt−s (x− y)b(u(τn+ s,y))1{s∈[0,τn+1−τn]}dyds,

Zn (t,x) :=
ˆ t

0

ˆ
Rd

pt−s (x− y)σ (u(τn+ s,y))1{s∈[0,τn+1−τn]}W((τn+ ds) ,dy) .

Then for all t ∈ [0, τn+1 − τn],

u(τn+ t,x) = Un (t,x)+ In (t,x)+ Zn (t,x) (3.4)

Furthermore, the presence of the indicator function 1{s∈[0,τn+1−τn]} in the definitions of In(t,x)
and Zn(t,x) guarantees that the integrands are bounded in Vp–norm.

Because pt(·) is a probability density, it follows from Young’s inequality for convolutions
that for any t> 0,

‖Un (t, ·)‖Vp ⩽ ‖u(τn, ·)‖Vp = 3n. (3.5)

Because of the definition of the stopping time τ n in (3.1) and lemma 2.4, we see that∥∥b(u(τn+ s,y))1{s∈[0,τn+1−τn]}
∥∥
Vp

⩽ h
(
3n+1

)
. (3.6)

Therefore, lemma 2.5 with M= h(3n+1) guarantees that for t ∈ [0, τn+1 − τn],

‖In (t, ·)‖Vp ⩽ th
(
3n+1

)
. (3.7)
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In particular, if t ∈ [0,an ∧ (τn+1 − τn)], then by the definition of an in (3.2), we have that

|In (t, ·) |⩽ anh
(
3n+1

)
⩽ 3n. (3.8)

The event {τn+1 − τn < an} can only occur if ‖u(τn+ t, ·)‖Vp > 3n+1 for some t ∈ (0,an).
But because ‖Un(t, ·)‖Vp and ‖In(t, ·)‖Vp are each less than 3n if t ∈ [0,an ∧ (τn+1 − τn)], the
Vp–norm can only triple in this short amount of time if the stochastic term satisfies

sup
t∈[0,an+1∧(τn+1−τn)]

‖Zn (t, ·)‖Vp > 3n.

Because of the definition of the stopping time τ n, (3.1) and lemma 2.4, the Vp–norm of the
integrand of the stochastic integral is bounded with probability one by

∥∥σ (u(τn+ s,y))1{s∈[0,τn+1−τn]}
∥∥
Vp

⩽ 3(n+1)(1−α/2)
(
h
(
3n+1

))α/2(
log

(
h
(
3n+1

)
3n+1

))−1/2

(3.9)

Using the exponential estimate (2.20) with

T= an, δ = 3n, and M= 3(n+1)(1−α/2)
[
h
(
3n+1

)]α/2(
log

(
h
(
3n+1

)
3n+1

))−1/2

,

we have that

P(τn+1 − τn < an)⩽ P

(
sup

t∈[0,an]
‖Zn (t, ·)‖Vp ⩾ 3n

)

⩽ C
(
1+ a−d/2

n

)
exp

−
C32(n+1) log

(
h(3n+1)
3n+1

)
32(n+1)

(
h(3n+1)
3n+1

)α
aαn


⩽ C

(
1+ a−d/2

n

)
exp
(
−CΘ−α |log(an/Θ)|

)
⩽ CaCΘ

−α−d/2
n .

The second-to-last inequality in the above display is a consequence of the definition of an
and (3.2), which guarantees that an ⩽ Θ3n+1

h(3n+1) . Now set q := CΘ−α − d/2 and choose Θ ∈
(0,1/3) small enough so that q> 1. Then we obtain that

P(τn+1 − τn < an)⩽ Caqn. (3.10)

From the definition of an in (3.2), we also know that an ⩽ 1/n. Therefore,

P(τn+1 − τn < an)⩽ Cn−q. (3.11)

This proves the claim in (3.3).
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Finally, we can prove the main result. From the claim in (3.3),
∞∑
n=1

P(τn+1 − τn < an)⩽ C
∞∑
n=1

n−q <+∞. (3.12)

By the Borel-Cantelli Lemma, with probability one there exists a random N(ω) such that for
all n⩾ N(ω), τn+1 − τn ≥ an. Because

∑
an =+∞ this implies that

P
(
sup
n
τn =+∞

)
= 1 (3.13)

proving that the solutions cannot explode in finite time. This completes the proof of
theorem 1.7.

4. An explosion example—the proof of theorem 1.8

Proof of theorem 1.8. We will prove this theorem via contradiction. Fix an arbitrary p⩾ 2.
We assume that the conclusion is false, namely, for all u0 ∈ Vp,

‖u(t, ·)‖Vp <∞, a.s. for all t> 0, (4.1)

and seek a contradiction. For this purpose, it suffices to consider the initial condition of the
following form, where p1(x) is the heat kernel from (1.4),

u0 (x) = Θ p1 (x) , for some Θ> 0. (4.2)

It is clear that u0 ∈ Vp. The proof consists of the following two steps.

Step 1. Let t ∈ (0,1). Multiply p1−t(x) on both sides of (1.4) and integrate over x to obtain

Yt = Y0 +Dt+Mt a.s. for all t ∈ (0,1) , (4.3)

where

Yt :=
ˆ
Rd

u(t,x)p1−t (x)dx with Y0 = (p1 ∗ u0)(0) = Θ(4π)−d/2
,

Dt :=

ˆ t

0

ˆ
Rd

p1−s (y)b(u(s,y))dsdy, and

Mt :=

ˆ t

0

ˆ
Rd

p1−s (y)σ (u(s,y))W(ds,dy) .

In this step, we claim that under (4.1), there exists Θ0 > 0 such that

P
(
Y1/2 ⩾ 2L

)
> 0, for all L> 0 and Θ⩾Θ0. (4.4)

The boundedness assumption on σ ensures that Mt is a martingale. Assumption in (4.1)
guarantees that Yt is well defined since

0⩽ Yt ⩽ ‖u(t, ·)‖L∞ ⩽ ‖u(t, ·)‖Vp <∞, a.s. for all t ∈ (0,1) . (4.5)

Note that the nonnegativity of Yt comes from the comparison principle (see [3, 14] and ref-
erences therein), which requires conditions such as σ(0) = 0 and b(0) = 0. However, we will
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show that Xt := E(Yt) will blow up at t= 1/2 provided that Θ is large enough, which then
implies the claim in (4.4).

It remains to show the blow-up of Xt. By treating p1−s(y)dydP as a probability measure on
Rd×Ω, we can apply Jensen’s inequality to see that

E(Dt)⩾
ˆ t

0
ds b

(
E
[ˆ

Rd

dy p1−s (y)u(s,y)

])
=

ˆ t

0
ds b(E [Ys]) ,

from which we obtain the following integral inequality

Xt ⩾Θ(4π)−d/2
+

ˆ t

0
b(Xs)ds.

Hence, by the finite Osgood condition (1.7), for some Y0 > 0, Xt blows up in finite time. By
increasing the value of Θ whenever necessary, one can ensure that X1/2 =∞. This completes
the proof of the claim in (4.4).

Step 2. Notice that Yt in (4.3) can be equivalently written as

Yt = Y1/2 +D∗
t +M∗

t a.s. for all t ∈ (1/2,1], (4.6)

where the initial condition Y1/2 is finite a.s. thanks to (4.5),

D∗
t :=

ˆ t

1/2

ˆ
Rd

p1−s (y)b(u(s,y))dsdy and M∗
t :=

ˆ t

1/2

ˆ
Rd

p1−s (y)σ (u(s,y))W(ds,dy) .

Step 2-1. As in Step 1, the boundedness assumption on σ guarantees that {M∗
t : t⩾ 1/2} is a

martingale. We claim that

P

(
inf

t∈[1/2,1]
M∗
t ⩽−L

∣∣∣∣∣F1/2

)
⩽ exp

(
− L2

2Cf ‖σ‖2L∞

)
, a.s. for all L> 0, (4.7)

where

Cf :=
ˆ 1

1/2
ds
¨

R2d

dy1dy2 p1−s (y1)p1−s (y2) f(y1 − y2)<∞. (4.8)

First note that assumption 1.1 guarantees the finiteness of the constant Cf. Let λ> 0 be some
constant to be chosen later. Since {exp(−λM∗

t ) : t⩾ 1/2} is a submartingale, by Doob’s sub-
martingale inequality, we see that

P

(
inf

t∈[1/2,1]
M∗
t ⩽−L

∣∣∣∣∣F1/2

)
= P

(
sup

t∈[1/2,1]
e−λM∗

t > eλL
∣∣∣∣∣F1/2

)
⩽ e−λLE

[
e−λM∗

1

∣∣∣∣∣F1/2

]

= E
(
exp

{
−λL+

λ2

2

ˆ 1

1/2
ds
¨

R2d

dy1dy2

×p1−s (y1)p1−s (y2)σ (u(s,y1))σ (u(s,y2)) f(y1 − y2)}
∣∣∣∣F1/2

)
⩽ exp

(
−λL+

1
2
Cfλ

2 ∥σ∥2L∞
)
, a.s., (4.9)
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where in the last inequality we have used the fact that f is nonnegative. Optimizing the constant
λ in (4.9) proves the claim in (4.7).

Step 2-2. Consider the following deterministic equation,

Ŷt = L+
ˆ t

1/2
b
(
Ŷs
)
ds, for t⩾ 1/2.

Since b(·) satisfies the finite Osgood condition (1.7), when L> 0 is large enough, the solution
to the above equation will explode before time 1. Indeed, one can choose the smallest L> 0
such that

´∞
L

dy
b(y) < 1/2. In the following, we fix this constant L.

Next for all t ∈ [1/2,1], another application of Jensen’s inequality with respect to the meas-
ure p1−s(y)dy to in the term D∗

t in (4.5) shows that

Yt ⩾
(
Y1/2 +M∗

t

)
+

ˆ t

1/2
b(Ys)ds, a.s. for all t ∈ (1/2,1].

Choose and fix arbitrary constant Θ>Θ0. We claim that

P(ΩL)> 0 with ΩL :=
{
Y1/2 +M∗

t ⩾ L : for all t ∈ [1/2,1]
}
.

Indeed, by the claims in (4.3) and (4.6), we see that

P(ΩL)⩾ P
({

Y1/2 ⩾ 2L
}
∩
{

inf
t∈[1/2,1]

M∗
t >−L

})
= P

(
Y1/2 ⩾ 2L

)
P
(

inf
t∈[1/2,1]

M∗
t >−L

∣∣∣∣Y1/2 ⩾ 2L

)
⩾ P

(
Y1/2 ⩾ 2L

)(
1− exp

(
− L2

2Cf ‖σ‖2L∞

))
> 0.

Therefore,

Yt ⩾ L+
ˆ t

1/2
b(Ys)ds, a.s. on ΩL for all t ∈ [1/2,1] .

Since b(·) is nondecreasing, we see that Ŷt provides a sub-solution to Yt in the sense that Yt ⩾ Ŷt
a.s. on ΩL for all t ∈ [1/2,1]. Hence, with positive probability, i.e. a.s. on ΩL with P(ΩL)> 0,
Y1 ⩾ Ŷ1 =∞, which contradicts with (4.4). This completes the proof of theorem 1.8.
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Appendix

In this appendix, we give a result about the Burkholder–Davis–Gundy inequality for the mar-
tingales taking values in a Banach space (typically Lp(Rd) in our setting). We begin by intro-
ducing some standard concepts, which can be found in, e.g. [19] or section 2.2 of [30].

Definition A.1 (definition 3.1 of [19]). A Banach space X is said to be 2-smooth provided
there exist an equivalent norm ‖·‖ and a constant C⩾ 2 such that for all x,y ∈ X,

‖x+ y‖2 + ‖x− y‖2 ⩽ 2‖x‖2 +C‖y‖2 .

Definition A.2 (definition 2.3 of [19]). Let H be a separable Hilbert space and X a separable
Banach space, B ∈ L(H,X) be an operator fromH to X, and ξi, i = 1,2,3, . . . , be a sequence of
independent standard Gaussian random variables, and {ek : k= 1,2,3, . . .} be one orthonor-
mal basis of H. Then B is called a radonifying operator if the series

∑∞
k=1B(ek)ξk converges

in L2(Ω,X). The space of radonifying operators are denoted by γ (H,X), which is a Banach
space with the radonifying norm

‖B‖γ :=

E

∥∥∥∥∥
∞∑
k=1

B(ek)ξk

∥∥∥∥∥
2

X

1/2

.

We have the following two facts (see, e.g. example 2.9 of [30] for details):

1. The Banach space X= Lp(Rd) for all p ∈ [2,∞) is 2-smooth and separable;
2. For any B ∈ γ

(
H,Lp

(
Rd
))
, it holds that

‖B‖γ ⩽ Cp ‖ ‖B‖H‖Lp . (A.1)

The following result about BDG inequality for martingales with values in Banach space, is
from theorem 1.1 in [26].

Theorem A.3. Let X be a 2-smooth and separable Banach space with norm ‖ · ‖X, W be a
cylindrical Q-Wiener process (Q is the covariance operator) on a real separable Hilbert space
H and U= range

(
Q1/2

)
. Then, there exists a constant Π <∞, depending only on (X,‖·‖X),

such that∥∥∥∥∥ sup
0⩽t⩽τ

∥∥∥∥ˆ t

0
ψ (s)dW(s)

∥∥∥∥
X

∥∥∥∥∥
k

⩽Π
√
k

∥∥∥∥∥
(ˆ τ

0
‖ψ (s)‖2γds

)1/2
∥∥∥∥∥
k

, for all k> 2, (A.2)

where τ is a stopping time and ψ is any progressively measurable γ(U,X)-valued stochastic
process satisfying

ˆ t

0
‖ψ (s)‖2γds<∞ for all t⩾ 0 a.s.

Since the Walsh integral can be written using the setup of H-valued process and the cyl-
indrical Wiener process on H, we can apply theorem A.3 with X= Lp(Rd), p⩾ 2, and com-
bine (A.1) and (A.2) to get the following lemma:
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Lemma A.4. Let p⩾ 2 be fixed and H be the Hilbert space introduced in (1.3). Assume that
ψ : Ω×R+ ×Rd×Rd → R be an adapted and jointly measurable random field such that

1. for each (s,x) ∈ R+ ×Rd, ψ(s, ·,x) ∈ H;
2. for each s> 0, ‖ψ(s, ·,◦)‖H ∈ Lp(Rd).

Then, for all k> 2 and t> 0, it holds that∥∥∥∥∥∥∥∥ˆ t

0

ˆ
Rd

ψ (s,y,◦)W(ds,dy)

∥∥∥∥
Lp

∥∥∥∥
k

⩽ C
√
k

∥∥∥∥∥
(ˆ t

0
‖‖ψ (s, ·,◦)‖H‖2Lp ds

)1/2
∥∥∥∥∥
k

, (A.3)

where the constant C does not depend on k. Note that inequality (A.3) is nontrivial only when
the right-hand side of the inequality is finite.
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